

XSCALE Guide

Contents

	About this guide

	XSCALE Principles

	XSCALE Structures

	XSCALE Roles

	XSCALE Metrics

	XSCALE Practices
	YAGNI

	Seven Samurai

	Leadership as a Service

	Throughput Diagram

	Pirate Canvas

	Business Bingo

	Release Refactoring

	Colophon
	License

	Attributions

About this guide

XSCALE Alliance is a learning ecosystem of independent coaches and consultancies
de-scaling agile organizations through practices derived from

	Hiawatha’s Great Law of Peace

	Rikyu’s Mu Hin Shu

	Goldratt’s Throughput Accounting

	Holmgren’s Permaculture

	Stack’s Open Book Management

	and Beck’s Extreme Programming

Like Linux, we use open source licensing
to collaborate on coaching and training material
for pattern languages – not frameworks –
for Business Agility, Product Management and DevOps.

We’re not like the big training frameworks.
We’re coaches, not trainers,
using XSCALE ourselves to collaborate on engagements, collateral and tools.

This guide is one of the results of such a collaboration.
In it, we collected patterns and practices that were most useful to us.

We hope this guide will help you to
build self-directing portfolios
of self-managing streams
of self-organizing teams of your existing staff.

We hope this guide will help you to run a self-propagating transformation.
Build a slender but uncompromised capability, then grow it.

So that your organization can be like pods of dolphins, not dancing elephants.

Sincerely,

Your friends from the XSCALE Alliance

XSCALE Principles

View article on our wiki [https://xscale.wiki/#XSCALE%20Principles]

XSCALE is an acronym for the principles of an Agile
Organization [https://xscale.wiki/#Agile%20Organization]. Also a
language [https://xscale.wiki/#Pattern%20Language] of best practice
for Agile organisations focused on exponential growth. As a method for
3rd Generation
Agile [https://xscale.wiki/#3rd%20Generation%20Agile], XSCALE extends
the Agile Manifesto [https://xscale.wiki/#Agile%20Manifesto]
principles to Product
Leadership [https://xscale.wiki/#Product%20Management], Portfolio
Leadership [https://xscale.wiki/#Continuous%20Adaptation], Culture
Leadership [https://xscale.wiki/#Self-Organizing%20Transformation]
and Holarchy [https://xscale.wiki/#Consensus%20Decision-Making].

XSCALE practices are fully compatible with
Spotify [https://xscale.wiki/#Spotify], {{SAFe}}, {{LeSS}},
{{Nexus}} and {{DAD}}, and have been applied successfully at scale as a
standalone method of generating completely Agile
Organization [https://xscale.wiki/#Agile%20Organization]s.

e [https://xscale.wiki/#Extropy]Xponential [https://xscale.wiki/#Extropy]
Return [https://xscale.wiki/#Throughput]

 Simple Design [https://xscale.wiki/#Simple%20Design]

 Continuous [https://xscale.wiki/#Continuous%20Adaptation]
Throughput [https://xscale.wiki/#Throughput]

 Autonomous Teams [https://xscale.wiki/#Autonomous%20Squad]

 Learning [https://xscale.wiki/#Learning]: triple
loop [https://xscale.wiki/#Learning]

 Ecosystems
Thinking [https://xscale.wiki/#Whole%20Board%20Thinking]

XSCALE Structures

View article on our wiki [https://xscale.wiki/#XSCALE%20Structures]

{{$:/structures-image}}

XSCALE Roles

View article on our wiki [https://xscale.wiki/#XSCALE%20Roles]

There are two kinds of Servant
Leader [https://xscale.wiki/#Leadership%20as%20a%20Service] role in
an XSCALE Organization [https://xscale.wiki/#XSCALE%20Organization]:
Coach and Leader. In general one coach
pairs [https://xscale.wiki/#Pair-Working] with one leader per the
Leadership as a
Service [https://xscale.wiki/#Leadership%20as%20a%20Service] practice
pattern. Each carries distinct responsibilities to reinforce their
squads’ autonomy [https://xscale.wiki/#Autonomous%20Squad].

Coach Responsibilities

	Determining the Last Responsible
Moment [https://xscale.wiki/#Last%20Responsible%20Moment] for the
team to make a decision

	Structuring and scheduling ceremonies

	Quality-assuring the outcome of each ceremony

Leader Responsibilities

	Making the decision if there’s no unanimity in the Last Responsible
Moment [https://xscale.wiki/#Last%20Responsible%20Moment]

	Prioritising the input to each ceremony

	Representing outcomes of ceremonies to other teams

Leader and Coach are functional roles, not job titles, so it is possible
for someone to play more than one such role at the same time. It is also
commonplace that doing so is sub-optimal as it overloads an individual
while imbalancing power relationships in their team.

For the specific responsibilities of leaders and coaches per squad see
XSCALE Coaches [https://xscale.wiki/#XSCALE%20Coaches] and XSCALE
Leaders [https://xscale.wiki/#XSCALE%20Leaders].

XSCALE Metrics

View article on our wiki [https://xscale.wiki/#XSCALE%20Metrics]

{{$:/metrics-image}}

XSCALE Practices

YAGNI, or do you?

	YAGNI

	Seven Samurai

	Leadership as a Service

	Throughput Diagram

	Pirate Canvas

	Business Bingo

	Release Refactoring

YAGNI

View article on our wiki [https://xscale.wiki/#YAGNI]

YAGNI [http://c2.com/cgi/wiki?YouArentGonnaNeedIt]

Seven Samurai

View article on our wiki [https://xscale.wiki/#Seven%20Samurai]

To do

Leadership as a Service

View article on our wiki [https://xscale.wiki/#Leadership%20as%20a%20Service]

Power tends to corrupt, and absolute power corrupts absolutely. Great
men are almost always bad men. – Lord
Acton [http://www.sciencedirect.com/science/article/pii/S1048984314000800]

The most enlightened civilisations in history regulated the ambitions of
their leaders through systems of checks and balances. Perhaps the most
successful example is the Iroquois Fire Keepers’
Consensus [https://xscale.wiki/#Fire%20Keepers'%20Consensus].

Accurate communication only happens between equals – Robert Anton
Wilson [https://en.wikipedia.org/wiki/Celine%27s_laws#Celine.27s_Second_Law]

When a leader doesn’t serve their team, but instead requires service,
team members don’t dare communicate accurately with the leader or, for
fear of being quoted, with each other. As scaling the responsibilities
of leadership eventually overwhelms any individual, leaders are obliged
to delegate accountability to subordinates via Command and
Control [https://xscale.wiki/#Command%20and%20Control], which
restricts teams from responding autonomously to change and so generates
Cultural Debt [https://xscale.wiki/#Cultural%20Debt].

Therefore,

Supply leadership only when a team requires it to achieve a decision in
a timely manner. To assure this we split decision-making
responsibilities between two roles. Here we’ll call them Coach and
Leader.

	If the rest of the team are unanimous about a decision, the Leader
role doesn’t get to decide. Servant leaders lead through influence,
not authority.

	Only when the Coach judges the team can’t reach a decision before the
Last Responsible
Moment [https://xscale.wiki/#Last%20Responsible%20Moment] - then
the Leader decides. The squad abides by any such decision until and
unless its other members unanimously overrule it.

	A Leader can only lead their own squad. For the sake of
autonomy [https://xscale.wiki/#Autonomous%20Squad], no Leader is
permitted to make decisions for any other team. teams, which are
fully capable of representing
themselves [https://xscale.wiki/#Team%20Representation].

Where a team is obliged to report into a Manager, the decision only
constitutes advice from the team. Where teams composit in a
Holarchy [https://xscale.wiki/#Holarchy], there need be no
intermediary managers.

Where an agreement must span more than one team, and disagreement or
dependency cycles make this inefficient, teams align by Team
Representation [https://xscale.wiki/#Team%20Representation]. To keep
alignment relevant to current circumstances, they regularly Brighten
The Chain [https://xscale.wiki/#Brighten%20The%20Chain]. Real servant
leadership is more proactive than simple checks and balances. Its
essence is generating
consensus [https://xscale.wiki/#Consensus%20Decision-Making].

In order to assure that Leaders are passionately committed to the team’s
success, they should be treated as Directly Responsible
Individual [https://xscale.wiki/#Directly%20Responsible%20Individual]s.
This places a leader under tension; on the one hand they represent a
specific responsibility; on the other, they’re forced to lead through
influence rather than authority. To succeed in the role requires vision,
passion and empathy - all the attributes of a Servant
Leader [https://xscale.wiki/#Servant%20Leader].

Throughput Diagram

View article on our wiki [https://xscale.wiki/#Throughput%20Diagram]

	In Lean
Manufacturing [https://xscale.wiki/#Lean%20Manufacturing], the
progress of a Kanban [https://xscale.wiki/#Kanban] is tracked
over time using a {{Cumulative Flow Diagram}} (CFD). CFDs are
superior to traditional Agile burndown/burnup charts because they
make it easier to see causes of
Waste [https://xscale.wiki/#Waste],
Stress [https://xscale.wiki/#Stress] and
Instability [https://xscale.wiki/#Instability].

	To represent Throughput [https://xscale.wiki/#Throughput] the
diagram must account for the time taken up in analysing the Features
in an Epic and the Stories in a Feature, not just the delivery and
integration workflow per story, and continuously represent the
components of Return as well.

	If a Value Stream [https://xscale.wiki/#Value%20Stream] is trying
to hit a calendar date It’s important to be able to see by simple
visual inspection of diagrams when the feature point budget for a
feature has been exceeded by Story
Point [https://xscale.wiki/#Story%20Point] estimates, and that
consequently a release must be
refactored [https://xscale.wiki/#Release%20Refactoring].

Therefore,

Feature Point [https://xscale.wiki/#Feature%20Point]s provide a
simple basis for this kind of accounting. The cost of an Epic over the
life of a release is the sum of its Feature Points. And as each Feature
is delivered by just one Squad at a time, the Feature Point cost of a
story is simply its Story
Point [https://xscale.wiki/#Story%20Point]s divided by Squad
Velocity [https://xscale.wiki/#Velocity].

A CFD that represents all these metrics is called a Throughput
Diagram. The topmost “return” line can represent revenue or an Epic’s
Critical Number [https://xscale.wiki/#Critical%20Number]. As with
CFDs, Throughput Diagrams can be added together to represent the flows
of whole Portfolio [https://xscale.wiki/#Portfolio]s.

{{$:/metrics-image}}

Pirate Canvas

View article on our wiki [https://xscale.wiki/#Pirate%20Canvas]

Pirate
Canvas [https://www.linkedin.com/pulse/pirate-canvas-charting-service-ecosystem-exponential-growth-merel/]

Business Bingo

View article on our wiki [https://xscale.wiki/#Business%20Bingo]

Feature Squad [https://xscale.wiki/#Feature%20Squad]s use a simple
collaborative estimation method called {{Planning Poker}} to determine
the relative effort needed to deliver different stories. These {{Story
Point}} estimates can be converted into dollars and time by combination
with delivery throughput measurements called {{Velocity}}. But they’re
not a suitable input to release planning because:

	They don’t and were never intended to estimate a Feature
Budget [https://xscale.wiki/#Feature%20Budget]. To get at a budget
estimate you’d have to multiply them by the Story
Velocity [https://xscale.wiki/#Story%20Velocity], which inevitably
and intentionally varies from team to team and, within a single team,
from time to time.

	You can’t produce story point estimates without breaking down
Feature [https://xscale.wiki/#Feature]s into
Stories [https://xscale.wiki/#Story]. If you wait until you’ve
done that for all your features, you’ve stepped out of Agile-land
back into Waterfall-land to have an Analysis
phase [https://xscale.wiki/#phase]. But if you don’t commit to
some kind of Feature-level release plan you’ll wind up with the
Business rebelling because of a lack of
predictability [https://xscale.wiki/#predictability], which will
also take you back to Waterfall-land.

	There are plenty of costs associated with delivering a Feature that
aren’t captured by Story estimates, especially to do with Feature
Integration
Testing [https://xscale.wiki/#Feature%20Integration%20Testing],
System Integration
Testing [https://xscale.wiki/#System%20Integration%20Testing],
Marketing [https://xscale.wiki/#Marketing] and
Opex [https://xscale.wiki/#Opex]. These must be taken into
account when budgeting Features for a release plan.

Therefore,

Business Bingo is a simple way to quickly determine the budget (time *
resource) and relative ROI (Royal Cod) of a feature set without waiting
for its features to be broken down into estimable stories. It bases
estimates and priorities on the historical costs of a set of features
delivered in previous releases and takes costs of analysis and operation
into account too. It also provides a simple method to “monetize” Story
Points [https://xscale.wiki/#Story%20Points] in terms of feature
budgets in Feature Points [https://xscale.wiki/#Feature%20Points].

Best of all, Business Bingo is easy, fun to play, and quickly aligns
business and technical stakeholders. It works like this:

	Write Fibonacci numbers from 1 to 89 on cards and lay them out in a
row across a large table. There’s nothing magical about Fibonacci
numbers - we use them because they consistently lead people to argue
in terms of trade-offs - is feature A really as big as feature B +
feature C, and so on.

	Select three previously delivered and deployed features with well
documented costs, one small, one medium and one large. Call these
probes. Describe each probe in story-normal form commensurable with
the roadmap features you want to estimate and represent their
complete delivery costs - including documentation, hotfix, opex, the
whole nine yards - in terms of Feature
Point [https://xscale.wiki/#Feature%20Point]s. Place the three
probes under the Fibonacci numbers that match their respective
magnitudes in feature points.

	Pick a feature from your Acceptance
Matrix [https://xscale.wiki/#Acceptance%20Matrix]. Compare it with
the probes, starting with the middle one, to evaluate its relative
size in Fibonacci multiples of feature points.

	As you add features, sort them into the appropriate Fibonacci column.
Continue to compare features this way until there are none left to
compare. If the estimators cannot agree on the Fibonacci number for a
feature, split it into pieces they can estimate separately.

	Take features that wind up in the last 3 columns and break them into
pieces you can estimate separately. This granularity limit greatly
improves the overall quality of the estimates.

	To estimate relative business value, you simply pick a different set
of 3 probes - one for an existing deployed feature that the PO says
has low business value, and then one that’s critically important to
business function, and then one roughly in between. Place them at 3,
13 and 55, respectively, and the rest of the Bingo game runs as
above.

	All Product Squad [https://xscale.wiki/#Product%20Squad] members
collaborate in a 3rd pass to calculate
Risk [https://xscale.wiki/#Risk]s.

	Record all three numbers on each feature card as input to Royal
Cod [https://xscale.wiki/#Royal%20Cod] prioritization.

There’s no dollar quantification of the return here, but we’ve found
business stakeholders quickly converge on which features are worth more
than which. And the conversations they have in getting to agreement are
extremely illuminating - the technical team members need to listen
carefully and ask questions to make certain they share the business
context.

ToDo [https://xscale.wiki/#ToDo]: update this description to account
for return estimation via {{Pirate Canvas}}.

Release Refactoring

View article on our wiki [https://xscale.wiki/#Release%20Refactoring]

	Release planning works to maximise Product Market
Impact [https://xscale.wiki/#Impact%20Mapping] and thereby
business Throughput [https://xscale.wiki/#Throughput] by
reconciling feature priorities and calendar dates with quantified
Release Goal [https://xscale.wiki/#Release%20Goal]s across the
Epic Landscape [https://xscale.wiki/#Epic%20Landscape].

	Business, design and technical stakeholders self-organize into
Product Squad [https://xscale.wiki/#Product%20Squad]s and
Portfolio Council [https://xscale.wiki/#Portfolio%20Council]s
to collaborate on tradeoffs for this purpose using Leadership as a
Service [https://xscale.wiki/#Leadership%20as%20a%20Service] and
Open Book
Management [https://xscale.wiki/#Open%20Book%20Management].

	When solution assumptions fail, market conditions change, new
business, design or technology constraints are identified, or other
significant learnings show up, feature priorities and release plans
must be adapted to them immediately to maintain
Throughput [https://xscale.wiki/#Throughput].

Therefore,

Release Refactoring is a rapid consensus game that enables quick numeric
trade-offs between different feature-sets while respecting calendar
dates and budget limits for a release goal.

	This is a game for the entire Product
Squad [https://xscale.wiki/#Product%20Squad] - business
stakeholders make the decisions but design and tech stakeholders
question them and answer questions.

	Using the Royal Cod [https://xscale.wiki/#Royal%20Cod]
prioritization derived by Business
Bingo [https://xscale.wiki/#Business%20Bingo], lay out all
available Feature [https://xscale.wiki/#Feature]s in columns
grouped by Epic [https://xscale.wiki/#Epic].

	Pick the first column. Pick the feature at the top of the column.
Let business stakeholders say whether the Release
Goal [https://xscale.wiki/#Release%20Goal] can be satisfied for
this Epic without including that feature. If they disagree, use
Leadership as a
Service [https://xscale.wiki/#Leadership%20as%20a%20Service] to
resolve the matter.

	Continue down the column, feature by feature, until the business
stakeholders agree that one of the features isn’t critical for the
Release Goal [https://xscale.wiki/#Release%20Goal] for this
Epic [https://xscale.wiki/#Epic].

	Call all the features above that one bronze and all the ones
below them silver.

	Now ask the business stakeholders whether any of the silver features
could be deferred till the following release without impacting the
Release Goal [https://xscale.wiki/#Release%20Goal]. Call the
ones that can be deferred “gold”.

	Total how many feature points are in each of bronze, silver and gold
levels for that Epic.

	Total how much ROI [https://xscale.wiki/#ROI] are in each of
bronze, silver and gold levels for that Epic.

	Repeat the above steps for all columns.

	If you’re working to create a release plan for a particular date,
determine how many feature points correspond to that constraint. Now
simply select the combination of bronze, silver and gold groups with
the maximum ROI [https://xscale.wiki/#ROI] within that number.

	Let stakeholders do some fine tuning and trade-offs of features from
different epics to respect COD [https://xscale.wiki/#COD]
issues. But make certain they start with the bronze/silver/gold
tranches so keep this conversation manageable.

	If fitting to a continuous delivery funding model rather than a
specific date, use Getting Features
Done [https://xscale.wiki/#Getting%20Features%20Done] instead.

	Keep the refactoring board on an Information
Radiator [https://xscale.wiki/#Information%20Radiator] to assure
continuous alignment of authorities and for context for the next
Release Refactoring [https://xscale.wiki/#Release%20Refactoring]
session.

Release Refactoring is played whenever new features are added to the
Acceptance Matrix [https://xscale.wiki/#Acceptance%20Matrix],
whenever Sprint Planning [https://xscale.wiki/#Sprint%20Planning]
indicates a feature’s budget is blown, or whenever the PO calls for it.
Because this is such a quick game it’s also possible to play using
set-based Simple Design [https://xscale.wiki/#Simple%20Design] in an
R&D Stream [https://xscale.wiki/#R&D%20Stream] mode to evaluate
alternative product plans to evaluate possible responses to changes in
market conditions.

Colophon

This is version 0.1.0-beta of the XSCALE guide.
It is based on content from our wiki, available at https://xscale.wiki.

This guide is available in the following formats:

	website: https://XSCALE-Alliance.github.io/xscale-guide/

	pdf

	epub

License

CC BY-SA 4.0

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Attributions

We’ve used many open source tools to create this guide, most notably:

	TiddlyWiki

	Sphinx

	PyTiddlyWiki

	Pandoc

	PyPandoc

	Panflute

Index

 _static/up.png

_static/xscale-wide.png

_static/xscale.png

_static/ajax-loader.gif

_static/ccbysa.png

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 XSCALE Guide

 		
 About this guide

 		
 XSCALE Principles

 		
 XSCALE Structures

 		
 XSCALE Roles

 		
 XSCALE Metrics

 		
 XSCALE Practices

 		
 YAGNI

 		
 Seven Samurai

 		
 Leadership as a Service

 		
 Throughput Diagram

 		
 Pirate Canvas

 		
 Business Bingo

 		
 Release Refactoring

 		
 Colophon

 		
 License

 		
 Attributions

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

